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1. INTRODUCTION

Let R,"[a, b] denote the set of rational functions r = p/q where p is a
polynomial of degree <(n, ¢ is a polynomial of degree <<m and ¢ > 0 on
[a, b). Let k = n + m -+ 1. For each continuous function f defined on [a, 5]
let r, denote the rational function from R,,*[a, 6] which is the best approxi-
mation to f in the uniform (Chebyshev) norm, let e, = f— r; and set
E(f) = | e, e, is called the error curve of fand E,(f) the deviation. It is
well known that if /is normal there exist at least k + 1 points x, < -+ < x;,
in [a, b] such that ey (x;,) = —e(x;1,) = +Ei{f). These points will be called
the alternation points of e, . It follows that there exist at least k points
Uy <<+ < U,_, which are zeros of e, . These points will be called the inter-
polation points of f.

From the theory of rational interpolation it is known that if

r = p/q € Rmn[aa b]

interpolates '€ Cla, b] at points y; << - < y,, wherek = n + m + 1, and
if £ exists on (a, b), then for each x in [a, b],

&) — p(x)fq(x) = [((x — 1) = (x — )k gx))(fg) M (€(x))

for some £(x) in the interval determined by y, ,..., y; and x. Therefore, if
r; = p/q is the best approximation to f and f is normal and u, ,..., u,_, are
interpolation points of £, then

f&) — r(x) = [((x — ug) -+ (x — )k gD H(E)),

where x; < u; < X;41, f = 0,..., k — 1. If we assume that (fg)*® does not
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change sign on (g, b), then it follows easily that e, has precisely k + 1
alternation points by considering the error term for rational interpolation;
and if (f)*) = 0 on [qa, b], then ey(x;) = +E(f).

Suppose r, = p/gq is the best approximation to ge Cla, b] from
R a, b)(R?,_,la, b)). If g is normal and ( g§)*~Y = 0 on (a, b), then e,_;
has exactly k alternation points z, << -+ < z;_; . It will be shown that under
appropriate conditions the alternation points of e,_, interlace those of ¢, .
This property has been established by Shohat [3] in the case of polynomial
approximation. Recently, Rowland [2] proved that the interpolation points
in polynomial approximation have the same property. It is the purpose of
this paper to extend Shohat’s result to the case of rational approximation

2. MAIN RESULT

Following the notation in Rowland [2], denote the j-th alternation points
of ¢, and ¢,,_, by x; and z, , respectively, starting with the subscript zero. Let
A, denote the class of functions which are nonnegative on (a, ) and do not
vanish on any subinterval of (a, b). Let A_ = {f: —fe A,}and A=A,V A_.

THEOREM. Suppose r; = plq, ry = P/q are the best approximations to f,
g€ Cla, b) from R,"a, b] and R2[a, bJ(RY _,la, b)), respectively. Suppose
Sfurther that f and g are normal and that (fg)® e A, and (gg)* Ve Ad,,
k=n+m-+1.

If f(")/Ek(f) + g(’”")/Ek_l(g) €A, then xq < zy unless a = x, = zy;
X; < zj, j=1,.,k—1

If FPIE(f) — g Ei(8) € 4, then z; < X;p1, j= Lok — 1;
Zy < Xpya unless zp = Xy = b.

@.n

2.2)

Proof. The proof will proceed as in [2]. Define functions F and G by
F=(—mE(f), G=(g—r)E(8)

Using the remainder formula for rational interpolation we see that F(x;) =
G(zy_1) = 1. Therefore

F(x;) = (—1)F, j=0,.,k
G(z)) = (D1, j=0,.,k—1.

Define a function by h = F + G. Since | F|| = || G| = 1,
(— D) h(x;) 20, j=0,.,k 2.3)
(—D*¥ Y h(z) 20, j=0,.,k—1. 2.4

We will need two results from [2].
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(2.5) Suppose f is continuous on [a, b] and differentiable on (a, b).
If g, < - < a4, are points in [a, b] and (—1Y f(a;,) = 0, j = 1,..., m, then
[ has at least m — 1 zeros on [a, b].

(2.6) If fis continuous on [a, b] and f*® € A, then fhas at most k zeros
on [a, ], counting interior double zeros twice.

To establish (2.1), assume the contrary and let i denote the first index for
which z; << x; . We will show that

(2.7) h has at least i zeros on [a, z;_,], and
(2.8) h has at least k + 1 — i zeros on [z;, b].

These two conditions will then contradict (2.6).

If i =0and a < x4 = z,, then / has a double zero at x, and (2.3) and
(2.5) show that h has at least k — 1 zeros on [x; , x;]. Thus 4 has at least
k -+ 1 zeros on [z,, b). If i = O and z, < x,, then (2.3), (2.4), and (2.5) show
that 4 has at least k -+ 1 zeros on [z, , b].

Ifi=1 anda = x4 = z,then b(@) = (—1)* + (—DF2 = 0;if x4 < 2,
then (2.3), (2.4), and (2.5) show that A has at least one zero on [x,, z,].
Thus 2.7)is true if i = 1. If i > 1, (2.7) follows easily from (2.3), (2.4), and
(2.5); and (2.8) follows just as in the polynomial case [2]. This completes the
proof of (2.1). In addition, (2.2) also follows from the proof in [2] and the
proof of the theorem is complete.
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